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ABSTRACT

Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex mate-
rials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials.
Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials.
In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey
the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for
highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package.
Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can signif-
icantly enhance the accuracy and efficiency of MD simulations for heat transport studies.
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I. INTRODUCTION

Heat transport properties are crucial for numerous applica-
tions.1,2 At the atomistic level, there are primarily three computa-
tional methods for heat transport:3 molecular dynamics (MD)
simulations, methods related to Boltzmann transport equation
(BTE)—including, more generally, quasi-harmonic Green–Kubo
(QHGK) method4 and Wigner transport equation (WTE)
approach5,6—combined with anharmonic lattice dynamics (ALD)
(BTE-ALD for short), and atomistic Green function (AGF). Each
method has its advantages and disadvantages.3 This mini-review and
tutorial focuses on the MD methods. For the BTE-ALD and AGF
approaches, we refer interested readers to previous tutorials.3,7,8 Our
emphasis is on thermal conductivity, including finite systems,
instead of thermal boundary conductance/resistance. For the latter,
we suggest referring to a previous tutorial9 and a review article.10

Notable advantages distinguish MD from the other two
methods. First, MD can capture phonon–phonon scatterings at any
order, while the other two methods are perturbative in nature and
often consider only three-phonon scatterings (for BTE-ALD) or
even completely ignore anharmonicity (for AGF). Second, MD can
naturally capture scatterings of phonons by other sources such as
defects and mass disorder, extending its applicability to fluid systems
that are beyond the reach of the other two methods. Third, the com-
putational cost of MD with classical potentials is usually linear with
respect to the number of atoms, while it typically exhibits high-order
polynomial scaling in the other two methods. Based on these consid-
erations, MD proves particularly suitable for studying heat transport
in strongly anharmonic or highly disordered systems.

Despite these advantages, MD simulations have grappled with
challenges, particularly in terms of accuracy, over a considerable
period of time. The predictive power of MD simulations is highly
dependent on the accuracy of the classical potentials, which are
mathematical models representing the potential energy surface of
systems in terms of geometric information. The interatomic forces
can be accurately computed using ab initio methods such as
quantum-mechanical density-functional theory (DFT), leading to
the ab initio molecular dynamics (AIMD) method, which has been
applied to heat transport studies.11–14 A challenge in the AIMD
approach is the high computational intensity, which imposes limi-
tations on the size and timescales that can be effectively simulated.

Recently, a type of classical potentials based on machine learn-
ing (ML) techniques, called machine-learned potentials (MLPs), has
emerged as an effective framework for constructing highly accurate
interatomic potentials. Due to the flexible functional forms and a
large number of fitting parameters in MLPs, they can usually achieve
significantly higher accuracy compared to traditional empirical
potentials. Notable MLP models, to name a few, include Behler–
Parrinello neural-network potential (BPNNP),15 Gaussian approxi-
mation potential (GAP) and related,16–18 spectral neighbor analysis
potential (SNAP),19 moment tensor potential (MTP),20 deep poten-
tial (DP),21 and atomic cluster expansion (ACE).22 In this context,
the recently developed neuroevolution potential (NEP) approach23–25

simultaneously demonstrates excellent accuracy and outstanding
computational efficiency, offering a distinctive advantage.
Furthermore, MLPs have been increasingly used in MD simulations,
including heat transport simulations (see Fig. 1 for a general trend).

Parallelization stands out as another key advancement in MD
simulations, involving the deployment of parallel computing to take
advantage of rapid hardware upgrades and speedups, where a large
number of processors or cores work simultaneously to perform cal-
culations, to augment computational efficiency and spatiotemporal
scales of simulations. GPUMD,26 short for Graphics Processing Units
Molecular Dynamics, represents a noteworthy development in this
arena. GPUMD is a versatile MD package fully implemented on graph-
ics processing units (GPUs). This advancement facilitates the simula-
tions of larger and more complex systems by leveraging the powerful
parallel processing capabilities of GPUs. For example, it has been
demonstrated that GPUMD can achieve a remarkable computational
speed of 1.5×108 atom step/s (equivalent to a cost of 6:7� 10�9 s/
atom/step) in MD simulations using eight 80-gigabyte A100 graphics
cards, enabling simulations up to 100 million atoms for high-entropy
alloys employing a general-purpose unified NEP machine-learned
potential for 16 elemental metals and their alloys.27

In this mini-review and tutorial, we dig into the fundamentals
of heat transport, the relevant MD simulation methods, and the
applications of MLPs in MD simulations of heat transport. We use
the NEP model23–25 as implemented in the GPUMD package26 to
illustrate the various technical details involved. By completing this
tutorial, the readers will gain both fundamental knowledge and
practical skills to construct MLPs and apply them in highly efficient
and predictive MD simulations of heat transport.

II. FUNDAMENTALS OF HEAT TRANSPORT AND
RELEVANT MD SIMULATION METHODS

A. Thermal conductivity and thermal conductance

1. Thermal conductivity

Fourier’s law describes the empirical relationship governing
heat transport, expressed as

Qμ ¼ �
X
ν

κμν
@T
@xν

: (1)

FIG. 1. Number of publications (up to March 10, 2024) on heat transport MD simu-
lations using MLPs as a function of year, with detailed information in Tables I and II.
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Here, Qμ is the heat flux in the μ direction, @T
@xν

is the temperature
gradient in the ν direction, and κμν is an element of the
second-rank conductivity tensor.28 The heat flux measures the heat
transport per unit time and per unit area, typically measured in
Wm�2. The thermal conductivity is commonly expressed in units
of Wm�1 K�1.

When the coordinate axes align with the principal axes of the
conductivity tensor, thermal transport decouples in different direc-
tions, yielding a diagonal thermal conductivity tensor with three
nonzero elements: κxx , κyy , and κzz . These are commonly denoted
as κx , κy , and κz for simplicity. For isotropic 3D systems, we
usually define a conductivity scalar κ in terms of the trace of the
tensor: κ ¼ (κx þ κy þ κz)=3. For isotropic 2D systems, we usually
define a conductivity scalar for the planar components:
κ ¼ (κx þ κy)=2. For quasi-1D systems, it is only meaningful to
define the conductivity in a single direction. For simplicity, from
here on we work with the conductivity scalar κ unless it is neces-
sary to consider the conductivity tensor.

2. Thermal conductance

In macroscopic transport (the meaning of which will become
clear soon), thermal conductance K is related to thermal conduc-
tivity by

K ¼ κ
A
L
, (2)

where A is the cross-sectional area and L is the system length along
the transport direction. This relation is similar to that between elec-
trical conductance and electrical conductivity one learns in high
school. Usually, thermal conductivity is considered an intrinsic
property of a material, and thermal conductance depends on the
geometry (A and L). However, complexities emerge when examin-
ing heat transport at the nanoscale or mesoscale.

At the nanoscale, the conventional concept of conductivity
may lose its validity.29 For example, thermal transport in materials
with high thermal conductivity, such as diamond at the nanoscale,
is almost ballistic, meaning the conductance changes little with
increasing system length L. In this case, if we assume that Eq. (2)

still holds, then the thermal conductivity κ cannot be regarded as a
constant but as a function of the system length, κ ¼ κ(L). This
deviates from the conventional (macroscopic) concept of thermal
conductivity.

Rather than adhering strictly to Eq. (2), one can generalize the
relation between conductance and conductivity as follows:

1
K
¼ 1

K0
þ 1
κ

L
A
, (3)

where K0 is the ballistic thermal conductance of the material. The
term κ in Eq. (3) refers to the diffusive thermal conductivity, the
conventional thermal conductivity defined in the macroscopic limit
(L ! 1) where the phonon transport is diffusive. By contrast, the
length-dependent thermal conductivity κ(L) defined in Eq. (2) is
usually called the apparent thermal conductivity or effective thermal
conductivity. In the diffusive limit, the apparent thermal conductiv-
ity κ(L) defined in Eq. (2) approaches the diffusive conductivity κ
defined in Eq. (3), as expected.

By comparing Eqs. (2) and (3), we obtain the following rela-
tion between the apparent thermal conductivity κ(L) and the diffu-
sive thermal conductivity κ:

1
κ(L)

L
A
¼ 1

K0
þ 1
κ

L
A
: (4)

From this, we have

1
κ(L)

¼ 1
κ

1þ κA
K0L

� �
: (5)

It is more common to use thermal conductance per unit area G,
which is defined as

G ;
K
A
: (6)

The corresponding ballistic conductance per unit area is

TABLE I. The MLPs and their implementation packages that have been used in MD simulations of heat transport.

Year MLP Package Code repository or official website

2007 BPNNP RUNNER https://theochemgoettingen.gitlab.io/RuNNer
AENET https://github.com/atomisticnet/aenet
KLIFF https://github.com/openkim/kliff

2010 GAP QUIP https://github.com/libAtoms/QUIP
2015 SNAP FITSNAP https://github.com/FitSNAP/FitSNAP
2016 MTP MLIP https://gitlab.com/ashapeev/mlip-2
2017 SchNet SCHNETPACK https://github.com/atomistic-machine-learning/schnetpack
2018 DP DEEPMD-KIT https://github.com/deepmodeling/deepmd-kit
2019 MLFF VASP https://www.vasp.at
2021 NEP GPUMD https://github.com/brucefan1983/GPUMD
2024 So3krates MLFF https://github.com/thorben-frank/mlff
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TABLE II. Applications of MLPs in MD simulations of heat transport up to March 10, 2024.

MLP Year Reference Material(s) Year Reference Material(s)

BPNNP 2012 Sosso64 Amorphous GeTe 2015 Campi65 GeTe
2019 Bosoni66 GeTe nanowires 2019 Wen67 2D graphene
2020 Cheng68 Liquid hydrogen 2020 Mangold69 MnxGey
2020 Shimamura37 Ag2Se 2021 Han70 Sn
2021 Shimamura71 Ag2Se 2022 Takeshita72 Ag2Se
2024 Shimamura73 Ag2Se

GAP 2019 Qian74 Silicon 2019 Zhang75 2D silicene
2021 Zeng76 Tl3VSe4

SNAP 2019 Gu77 MoSSe alloy
MTP 2019 Korotaev78 CoSb3 2021 Liu79 SnSe

2021 Yang80 CoSb3 and Mg3Sb2 2021 Zeng81 BaAg2Te2
2022 Attarian82 FLiBe 2022 Ouyang83 SnS
2022 Ouyang84 BAs and Diamond 2022 Mortazavi85–87 Graphyne, 2D BCN, C60

2022 Sun88 Bi2O2Se 2023 Mortazavi89–91 C60, C36 and B40 networks
2023 Wang92 Cs2AgPdCl5 etc. 2023 Zhu93 CuSe
2024 Chang94 PbSnTeSe and PbSnTeS 2024 Wieser95 MOF crystals

SchNet 2023 Langer41 ZrO2

DP 2020 Dai96 ZrHfTiNbTaC alloy 2020 Li97 β-Ga2O3

2020 Li98 Silicon 2020 Pan99 ZnCl2
2021 Bu100 KCl-CaCl2 molten salt 2021 Dai101 TiZrHfNbTaB alloy
2021 Deng102 MgSiO3 liquid 2021 Liu103 Al
2021 Tisi35 Water 2022 Gputa104 Cu7PSe6
2022 Huang105 B12P2 2022 Liang106 MgCl2-NaCl eutectic
2022 Pegolo107 Li3ClO 2022 Wang108 Wadsleyite
2022 Yang109 MgSiO3 perovskite 2022 Zhang110 Bi2Te3
2023 Bhatt111 Tungsten 2023 Dong112 NaCl-MgCl2-CaCl2
2023 Fu113 Ti-Zr-Y-Si-O ceramic 2023 Gupta114 Bulk MoSe2 and WSe2
2023 Han115 2D InSe 2023 Huang116 CdTe
2023 Li117,118 Cu/H2O and TiO2/H2O 2023 Qi119 Vitreous silica
2023 Qiu120 Ice 2023 Qu121 MnBi2Te4, Bi2Te3/MnBi2Te4
2023 Ren122 Ag8SnSe6 2023 Wang123 Bridgmanite, Post-perovskite
2023 Xu124 MgCl2-NaCl and MgCl2-KCl 2023 Zhang125,126 Sb2Te3
2023 Zhang127 Water 2023 Zhang128 Boron arsenide
2023 Zhao129 NaCl and NaCl-SiO2 2024 Fu130 SiC
2024 Li131 AlN 2024 Li132 GaN/SiC interfaces
2024 Peng133 MgSiO3-H2O 2024 Zhang134 MoAlB

MLFF 2021 Verdi135 ZrO2 2024 Lahnsteiner136 CsPbBr3
NEP 2021 Fan23 PbTe, Si 2022 Dong137 2D silicene

2022 Fan24,25 PbTe, Amorphous carbon 2023 Cheng138 PbTe
2023 Dong139 C60 network 2023 Du140 PH4AlBr4
2023 Eriksson141 Graphite, h-BN, MoS2 2023 Liang142 Amorphous SiO2

2023 Liu143 Si/Ge nanowires 2023 Lu144 Fullerene-encapsulated CNT
2023 Ouyang145 AgX (X=Cl, Br, I) 2023 Pan146 MgOH system
2023 Sha147 2D PbTe 2023 Shi148 InGeX3 (X=S,Se,Te)
2023 Shi149 Halogen perovskites 2023 Su150 Cs2BiAgBr6, Cs2BiAgCl6
2023 Sun151 Ga2O3 2023 Wang152 Amorphous silicon
2023 Wang153 2D SrTiO3 2023 Xu154 Water
2023 Xiong155 Diamond allotropes 2023 Ying156,157 MOF crystals, Phosphorene
2023 Zhang158 Amorphous HfO2 2024 Cao159 Phosphorous carbide
2024 Cheng160 Perovskites 2024 Fan161 HKUST-1 crystal
2024 Fan162 Graphene antidot lattice 2024 Li163 Strained monolayer graphene
2024 Li164 Amorphous silicon 2024 Li165 2D COF-5
2024 Pegolo166 Glassy LixSi1−x 2024 Wang167 Ga2O3

2024 Ying168 MOF crystals 2024 Yue169 Si-C interfaces
2024 Zeraati170 La2Zr2O7 and many others 2024 Zhang171 GeTe

So3krates 2023 Langer42 SnSe
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G0 ¼ K0=A. Using this, we have

1
κ(L)

¼ 1
κ

1þ κ=G0

L

� �
: (7)

The ratio between the diffusive conductivity and the ballistic con-
ductance per unit area defines a phonon mean free path (MFP),

λ ;
κ

G0
: (8)

In terms of the phonon MFP, we have

1
κ(L)

¼ 1
κ

1þ λ

L

� �
: (9)

This is known as the ballistic-to-diffusive transition formula for the
length-dependent thermal conductivity. Figure 2 schematically
shows the ballistic-to-diffusive transition behavior.

The above discussion is simplified in the sense that no
channel dependence of the thermal transport has been taken into
account. Different channels usually have different MFPs and diffu-
sive conductivities. In general, both the conductivity and the MFP
are frequency dependent and we can generalize Eq. (9) to

1
κ(ω, L)

¼ 1
κ(ω)

1þ λ(ω)
L

� �
: (10)

With κ(ω, L), we can obtain the apparent thermal conductivity at
any length L as

κ(L) ¼
ð1
0

dω
2π

κ(ω, L): (11)

We use two toy models to illustrate the above-discussed
concepts. In the first model, we assume that there is only one
phonon MFP of 1 μm and a diffusive thermal conductivity
of κ ¼ 1000Wm�1 K�1. Then, ballistic conductance is

FIG. 2. Ballistic-to-diffusive transition of the apparent thermal conductivity κ(L). (a) and (b) a toy model with a single phonon MFP of 1 μm and a diffusive thermal conduc-
tivity of κ ¼ 1000 W/m K; (c) and (d) a toy model with two phonon MFPs, one of 0:1 μm, the other 1 μm, with diffusive conductivity of 500 W/m K. The dots in each panel
represent a few special lengths, from 0.2 to 5 μm. In (a) and (c), the dashed lines represent the ballistic limit.
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κ=λ ¼ 1 GWm�2 K�1. Then, the apparent thermal conductivity
κ(L) is given by Eq. (9), as shown in Figs. 2(a) and 2(b). In this
case, 1=κ(L) varies linearly with 1=L. In the second model, we
assume that there are two phonon modes, one with a MFP of
0:1 μm, and the other 1 μm, both having a diffusive conductivity of
500Wm�1 K�1. Then the ballistic conductances for these two
modes are 5 and 0.5 GWm�2 K�1, respectively. The higher ballistic
conductance in the second toy model can be visualized in Fig. 2(c).
Although the apparent thermal conductivity for each mode follows
Eq. (9), when combined, 1=κ(L) does not exhibit linearity with
1=L. This is an important feature for realistic materials with a
general MFP spectrum κ(ω).

B. Heat flux and heat current

The heat flux is defined as the time derivative of the sum of
the moments of the site energies of the particles in the system,30

Q ;
1
V

d
dt

X
i

riEi: (12)

The site energy Ei is the sum of the kinetic energy miv2i =2 and the
potential energy Ui. Here mi, ri, and vi are the mass, position, and
velocity of particle i, respectively, and V is the controlling volume
for the particles, which is usually the volume of the simulation box,
but can also be specifically defined for low-dimensional systems
simulated with vacuum layers. In MD simulations, it is usually
more convenient to work on the heat current that is an extensive
quantity,

J ; VQ: (13)

It is clear that the total heat current can be written as two terms,

J ¼ Jkin þ Jpot, (14)

where the first term is the kinetic or convective part,

Jkin ¼
X
i

viEi (15)

and the second term is called the potential part,

Jpot ¼
X
i

ri(Fi � vi)þ
X
i

ri
dUi

dt
: (16)

The expression above involves absolute positions and is thus not
directly applicable to periodic systems. To derive an expression that
can be used for periodic systems, we need to discuss potential
energy and interatomic force first.

For the MLPs discussed in this tutorial, the total potential
energy U of a system can be written as the sum of site potentials
Ui,

U ¼
XN
i¼1

Ui: (17)

The site potential can have different forms in different potential
models. A well-defined force expression for general many-body
potentials that explicitly respects Newton’s third law has been
derived as31

Fi ¼
X
j=i

Fij, (18)

where

Fij ¼ �F ji ¼ @Ui

@rij
� @Uj

@r ji
: (19)

Here, @Ui=@rij is a shorthand notation for a vector with Cartesian
components @Ui=@xij, @Ui=@yij, and @Ui=@zij. The atomic position
difference is defined as

rij ; r j � ri: (20)

Using the force expression, the heat current can be derived to be31

Jpot ¼
X
i

X
j=i

rij
@Uj

@r ji
� vi

� �
: (21)

From the definition of virial tensor

W ¼
X
i

Wi ¼
X
i

ri � Fi (22)

and the force expression Eq. (18), we have

W ¼ � 1
2

X
i

X
j=i

rij � Fij: (23)

Using the explicit force expression Eq. (19), we can also express the
per-atom virial as

Wi ¼
X
j=i

rij � @Uj

@r ji
: (24)

Therefore, the heat current can be neatly written as

Jpot ¼
X
i

Wi � vi: (25)

This expression, which involves relative atom positions only, is
applicable to periodic systems and has been implemented in the
GPUMD package26 for all the supported interatomic potentials,
including NEP. The current implementation of the heat current in
LAMMPS

32 is generally incorrect for many-body potentials, and cor-
rections to LAMMPS have only been done for special force fields.33,34

For any MLP that interfaces with LAMMPS, one must use the full
nine components of the per-atom virial and provide a correct
implementation of Eq. (24). NEP has an interface for LAMMPS that
meets this requirement. To the best of our knowledge, among the
other publicly available MLP packages, only DEEPMD

21 (after the
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work of Tisi et al.35) and AENET
36 (after the work of Shimamura

et al.37) have implemented the heat current correctly. The heat
current is also correctly formulated38 for a MLP based on the
smooth overlap of atomic positions.39 Contrarily, the widely used
MTP method20 (as implemented in Ref. 40), for example, exhibits
an incorrect implementation of the heat current, as demonstrated
in Fig. 3. According to energy conservation, the accumulated heat
from the atoms [cf. Eq. (25)] should match that from the thermo-
stats [cf. Eq. (31)], allowing for only small fluctuations. It is evident
that both DP and NEP exhibit this property, whereas MTP does
not. Details on the calculations are provided in the Appendix.

Note that the above formulation of heat current has been
derived specifically for local MLPs with atom-centered descriptors.
For semilocal message-passing-based MLPs, the formulation of heat
current has been shown by Langer et al.41,42 to be more complicated.

C. Overview of MD-based methods for heat transport

In the following, we review the heat transport MD methods
implemented in the GPUMD package, including equilibrium molecular

dynamics (EMD), nonequilibrium molecular dynamics (NEMD),
homogeneous nonequilibrium molecular dynamics (HNEMD), and
spectral decomposition. While the approach-to-equilibrium
method43–45 can in principle be realized in GPUMD, our discussion will
primarily focus on the other three methods that have been widely
employed with GPUMD.

1. The EMD method

The EMD method is based on the Green–Kubo relation for
thermal transport,46

κμν(t) ¼ 1
kBT2V

ðt
0
dt0Cμν(t

0), (26)

where Cμν(t) is the heat current autocorrelation function (HCACF)

Cμν(t) ¼ hJμ(0)Jν(t)ie: (27)

The equations above define the running thermal conductivity,
which is a function of the correlation time t. In MD simulations,
the correlation function is defined as

hJμ(0)Jν(t)ie �
1
tp

ðtp
0
Jμ(τ)Jν(t þ τ)dτ: (28)

where tp is the production time within which the heat current data
are sampled. This production run should be in an equilibrium
ensemble (as indicated by the subscript “e” in the HCACF expres-
sion), usually NVE, but NVT with a global thermostat can also be
used. Thermal conductivity in the diffusive limit is obtained by
taking the limit of t ! 1, but in practice, this limit can be well
approximated at an appropriate t. One also needs to ensure that
the simulation cell is sufficiently large to eliminate finite-size
effects.47–49

2. The NEMD method

The NEMD method is a nonequilibrium and inhomogeneous
method that involves implementing a pair of heat source and sink
using a thermostatting method or equivalent. There are two
common relative positions of the source and sink in the NEMD
method, corresponding to two typical simulation setups. In one
setup, the source and sink are separated by half of the simulation
cell length L, and periodic boundary conditions are applied along
the transport direction. Heat flows from the source to the sink in
two opposite directions in this periodic boundary setup. In the
other setup, the source and sink separated by L are located at the
two ends of the system. Fixed boundary conditions are applied
along the transport direction to prevent sublimation of the atoms
in the heat source and sink. Heat flows from the source to the sink
in one direction in this fixed boundary setup. It has been estab-
lished50 that the effective length in the periodic boundary setup is
only L=2. This factor must be taken into account when comparing
results from the two setups.

When the system reaches a steady state, a temperature profile
with a definite temperature gradient ∇T will be established.
Meanwhile, a steady heat flux Q will be generated. With these, one

FIG. 3. Accumulated heat as a function of time in non-equilibrium steady state
simulated with (a) NEP, (b) DP, and (c) MTP, using GPUMD

26 (for NEP) or
LAMMPS

32 (for DP and MTP).
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can obtain the apparent thermal conductivity κ(L) of a system of
finite length L according to Fourier’s law,

κ(L) ¼ Q
j∇Tj , (29)

in the linear response regime where the temperature gradient j∇Tj
across the system is sufficiently small. It has been observed that the
local Langevin thermostat outperforms the global Nosé–Hoover
thermostat51,52 in generating temperature gradients.53 It has also
been demonstrated that the temperature gradient should be directly
calculated from the temperature difference j∇Tj ¼ ΔT=L rather
than through fitting part of the temperature profile.53 This is to
ensure that the contact resistance is also included, and the total
thermal conductance is given by

G(L) ¼ Q
jΔTj : (30)

The steady-state heat flux can be computed either microscopi-
cally or from the energy exchange rate dE=dt in the thermostatted
regions and cross-sectional area A as

Q ¼ 1
A
dE
dt

, (31)

based on energy conservation. The two approaches must generate
the same result, and they have been used to validate the implemen-
tation of heat flux in several MLPs, as shown in Fig. 3.

A common practice in using the NEMD method is to extrapo-
late to the limit of infinite length based on the results for a few
finite lengths. It is important to note that linear extrapolation is
usually insufficient, as suggested even by the toy-model results
shown in Fig. 2(d).

3. The HNEMD method

In the HNEMD method, an external force of the form54

Fext
i ¼ EiFe þ Fe �Wi (32)

is added to each atom to drive the system out of equilibrium,
inducing a nonequilibrium heat current (note the subscript “ne”),

hJ(t)ine ¼
1

kBT

ðt
0
dt0hJ(0)� J(t0)ie

� �
� Fe: (33)

The driving force parameter Fe is of the dimension of inverse
length. The quantity in the parentheses is proportional to the
running thermal conductivity tensor and we have

hJμq (t)ine
TV

¼
X
ν

κμν(t)Fν
e : (34)

This provides a way of computing the thermal conductivity. In the
HNEMD method, the system is in a homogeneous nonequilibrium
state because there is no explicit heat source and sink. The system

is periodic in the transport direction and heat flows circularly
under the driving force. Because of the absence of heat source and
sink, no boundary scattering occurs for the phonons and the
HNEMD method is similar to the EMD method in terms of finite-
size effects.

4. Spectral decomposition

In the framework of the NEMD and HNEMD methods, one
can also calculate spectrally decomposed thermal conductivity (or
conductance) using the virial-velocity correlation function,54,55

K(t) ¼
X
i

Wi(0) � vi(t)
* +

ne

: (35)

In terms of this, the thermal conductance in NEMD simulation
can be decomposed as follows:

G ¼
ðþ1

�1

dω
2π

G(ω), (36)

G(ω) ¼ 2
VΔT

ðþ1

�1
eiωtKμ(t)dt: (37)

The thermal conductivity in HNEMD simulation can be decom-
posed as follows:

κμν ¼
ðþ1

�1

dω
2π

κμν(ω), (38)

2
VT

ðþ1

�1
eiωtKμ(t)dt ¼

X
ν

κμν(ω)Fe
ν : (39)

The virial-velocity correlation function here is essentially the force–
velocity correlation function defined for a (physical or imaginary)
interface.56,57

The spectral quantities allow for a feasible quantum-statistical
correction3,58 for strongly disordered systems where phonon–
phonon scatterings are not dominant. For example, the spectral
thermal conductivity can be quantum-corrected by multiplying the
factor

x2ex

(ex � 1)2
, (40)

where x ¼ �hω=kBT .
There are other spectral/modal analysis method implemented

in GPUMD, such as the Green–Kubo modal analysis method59 and
the homogeneous non-equilibrium modal analysis method,58 but
we will not demonstrate their usage in this tutorial.

III. REVIEW OF MD SIMULATION OF HEAT TRANSPORT
USING MLPS

Several MLPs have been used for heat transport with MD sim-
ulations, including BPNNP,15 GAP,16 SNAP,19 MTP,20 DP,21
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MLFF,60 NEP,23 SchNet,61 and So3krates.62 Table I lists the relevant
MLP packages implementing these MLPs.

The pioneering BPNNP model, developed by Behler and
Parrinello,15 has been implemented in various packages, including
RUNNER,15 AENET,36 and KLIFF.63 The DP, MLFF, NEP, GAP, MTP,
SNAP, SchNet, and So3krates models are implemented in
DEEPMD-KIT, VASP, GPUMD, QUIP, MLIP, FITSNAP, SCHNETPACK, and MLFF

respectively.
Most MLP packages are interfaced to LAMMPS

32 to perform
MD simulations, while NEP is native to GPUMD

26 but can also be
interfaced to LAMMPS. The MLFF method implemented in VASP is an
on-the-fly MLP that integrates seamlessly into AIMD simulations.

Table II compiles the publications up to today that have used
MD simulations driven by MLPs for thermal transport studies.
Note that our focus is on studies using MD simulations, excluding
those solely based on the BTE-ALD approach. The number of pub-
lications up to March 10, 2024 for each MLP is shown in Fig. 1.

The application of MLPs-based MD simulations to thermal
transport was pioneered by Sosso et al. in 2012 when they studied
the thermal transport in the phase-changing amorphous GeTe
system.64 However, thermal transport simulations are very compu-
tationally intensive, and the rapid increase of the number of appli-
cations has only been started after the development of the
GPU-based DP21 and NEP23 models. In this regard, the NEP
model is particularly advantageous due to its superior computa-
tional speed as compared to others.23–25 With comparable compu-
tational resources, it has been shown to be as fast as or even faster
than some empirical force fields.154,156

There are numerous successful applications of MLPs in
thermal transport. In Fig. 4, we present results from selected publi-
cations. The materials studied in these works have reliable experi-
mental results, serving as good candidates for validating the
applicability of MLPs. On one hand, MLPs demonstrate good
agreement with experimental results for highly disordered materials
such as liquid water,154 amorphous SiO2,

142 and amorphous
silicon.152 In addition to the reliability of MLPs, a crucial compo-
nent for accurately describing the temperature dependence of the
thermal conductivity in liquids and amorphous materials is a
quantum correction method based on the spectral thermal conduc-
tivity, as defined in Eq. (39), and the quantum-statistical-correction
factor, as given in Eq. (40). On the other hand, MLPs tend to sys-
tematically underestimate the thermal conductivity of crystalline
solids, including silicon (using a GAP model),74 CoSb3 (using a
MTP model), and graphite (in-plane transport, using a NEP
model).141 This underestimation has been attributed to the small
but finite random force errors, and a correction has been
devised.181 We will discuss this in more detail with an example in
Sec. IV.

IV. MOLECULAR DYNAMICS SIMULATION OF HEAT
TRANSPORT USING NEP AND GPUMD

In this section, we use crystalline silicon as an example to
demonstrate the workflow of constructing and using NEP models
for thermal transport simulations. The NEP approach has been
implemented in the open-source GPUMD package.25,26 After compil-
ing, there will be an executable named nep that can be used to

train accurate NEP models against reference data, and an execut-
able named gpumd that can be used to perform efficient MD simu-
lations. The GPUMD package is self-contained, free from
dependencies on third-party packages, particularly those related to
ML. This makes the installation of GPUMD straightforward and
effortless. In addition, there are some handy (but not mandatory)
Python packages available to facilitate the pre-processing and post-
processing GPUMD inputs and outputs, including CALORINE,182

GPYUMD,183 GPUMD-WIZARD,184 and PYNEP.185 Since its inception with
the very first version in 2013,186 GPUMD has been developed with
special expertise in heat transport applications.

A. The neuroevolution potential

The NEP model is based on artificial neural network (ANN)
and is trained using a separable natural evolution strategy
(SNES),187 hence the name.

1. The NN model

The ML model in NEP is a fully-connected feedforward ANN
with a single hidden layer, which is also called a multilayer percep-
tron. The total energy is the sum of the site energies U ¼Pi Ui,
and the site energy Ui is the output of the neural network (NN),
expressed as

Ui ¼
XNneu

μ¼1

ω(1)
μ tanh

XNdes

ν¼1

ω(0)
μν q

i
ν � b(0)μ

 !
� b(1): (41)

Here, Ndes is the number of descriptor components, Nneu is the
number of neurons in the hidden layer, qiν is the ν-th descriptor
component of atom i, ω(0)

μν is the connection weight matrix from
the input layer to the hidden layer, ω(1)

μ is the connection weight
vector from the hidden layer to the output layer, b(0)μ is the bias
vector in the hidden layer, and b(1) is the bias in the output layer.
ω(0)
μν , ω(1)

μ , b(0)μ , and b(1) are trainable parameters. The function
tanh(x) is the nonlinear activation function in the hidden layer.
According to Eq. (41), the NEP model is a simple analytical func-
tion of a descriptor vector. A C++ function for evaluating the
energy and its derivative with respect to the descriptor components
can be found in Ref. 25.

2. The descriptor

The descriptor qνi encompasses the local environment of atom
i. In NEP, the descriptor is an abstract vector whose components
group into radial and angular parts. The radial descriptor compo-
nents qin (0 � n � nRmax) are defined as

qin ¼
X
j=i

gn(rij), (42)

where rij is the distance between atoms i and j and gn(rij) are a set
of radial functions, each of which is formed by a linear combina-
tion of Chebyshev polynomials. The angular components include
n-body (n ¼ 3, 4, 5) correlations. For the 3-body part, the
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FIG. 4. Selected literature results on the application of MLPs to thermal transport, covering a broad range of materials, including liquid water,154 amorphous SiO2,
142 amor-

phous silicon,152 crystalline silicon,74 crystalline CoSb3,
78 and crystalline graphite.141 Experimental data are from Refs. 172 and 173 (liquid water), Refs. 174–176 (amor-

phous SiO2), Ref. 177 (amorphous silicon), Ref. 178 (crystalline silicon), Ref. 179 (crystalline CoSb3), and Ref. 180 (crystalline graphite).
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descriptor components are defined as (0 � n � nAmax,
1 � l � l3bodymax )

qinl ¼
X
m

(�1)mAi
nlmA

i
nl(�m), (43)

Ai
nlm ¼

X
j=i

gn(rij)Ylm(r̂ij): (44)

Here, Ylm are the spherical harmonics and r̂ij is the unit vector of
rij. Note that the radial functions gn(rij) for the radial and angular
descriptor components can have different cutoff radii, which are
denoted as rRc and rAc , respectively. For 4-body and 5-body descrip-
tor components (with similar hyperparameters l4bodymax and l5bodymax as
in the 3-body part), see Ref. 25.

3. The training algorithm

The free parameters are optimized using the SNES by minimiz-
ing a loss function that is a weighted sum of the root-mean-square
errors (RMSEs) of energy, force, and virial stress, over Ngen genera-
tions with a population size of Npop. The weights for the energy,
force, and virial are denoted λe, λf , and λv, respectively. Additionally,
there are proper norm-1 (‘1) and norm-2 (‘2) regularization terms.
For explicit details on the training algorithm, refer to Ref. 23.

4. Combining with other potentials

Although NEP with proper hyperparameters can account for
almost all types of interactions, it can be useful to combine it with
some well developed potentials, such as the Ziegler–Biersack–
Littmark (ZBL)188 potential for describing the extremely large
screened nuclear repulsion at short interatomic distances and the D3
dispersion correction189 for describing relatively long-range but weak
interactions. Both potentials have been recently added to the GPUMD

package.168,190 It has been demonstrated that dispersion interactions
can reduce the thermal conductivity of typical metal-organic frame-
works by about 10%.168 With the addition of ZBL and D3, NEP can
then focus on describing the medium-range interactions.

B. Model training and testing

There are educational articles focusing on various best prac-
tices in constructing MLPs.191,192 Here, we use crystalline silicon as
a specific example to illustrate the particular techniques in the
context of NEP.

1. Prepare the initial training data

A training dataset is a collection of structures, each character-
ized by a set of attributes:

1. a cell matrix defining a periodic domain
2. the species of the atoms in the cell
3. the positions of the atoms
4. the total energy of the cell of atoms
5. the force vector acting on each of the atoms
6. (optionally) the total virial tensor (with six independent compo-

nents) of the cell

The structures can be prepared by any method, while the energy,
force, and virial are usually calculated via quantum mechanical
methods, such as the DFT method. For a dataset comprising Nstr

structures with a total number of N atoms, there are Nstr energy
data, 6Nstr virial data, and 3N force data.

While there are already several publicly available training data-
sets for silicon, we opt to create one from scratch for pedagogical
purposes. The construction of training dataset typically involves an
iterative process, employing a scheme similar to active learning.
The iterative process begins with an initial dataset. To investigate
heat transport in crystalline silicon, the initial training dataset
should encompass structures relevant to the target temperatures
and pressures. The most reliable way of generating structures under
these conditions is through performing AIMD simulations, where
interatomic forces are calculated based on quantum mechanical
methods, such as the DFT approach. However, AIMD is computa-
tionally expensive (which is the primary motivation for developing
a MLP) and it is often impractical to perform AIMD simulations
for a dense grid of thermodynamic conditions. Fortunately, there is
usually no such need for the purpose of generating the reference
structures. Actually, manual perturbation of the atomic positions
and/or the cell matrices proves to be an effective way of generating
useful reference structures.

Based on the considerations above, we generate the initial
training dataset through the following methods. First, we generate
50 structures by applying random strains (ranging from �3% to
þ3% for each degree of freedom) to the unit cell of cubic silicon
(containing 8 atoms) while simultaneously perturbing the atomic
positions randomly (by 0.1 Å). Second, we perform a 10-ps AIMD
simulation at 1000 K (fixed cell) using a 2� 2� 2 supercell of
silicon crystal containing 64 atoms, and sample the structures every
0.1 ps, obtaining another 100 structures. In total, we obtain 150
structures and 6800 atoms initially.

After obtaining the structures, we perform single-point DFT
calculations to obtain the reference energy, force, and virial data.
These data are saved to a file named train.xyz, using the
extended XYZ format. The single-point DFT calculations are per-
formed using the VASP package,193 using the Perdew–Burke–
Ernzerhof functional with the generalized gradient approxima-
tion,194 a cutoff energy of 600 eV, an energy convergence threshold
of 10�6 eV, and a k-point mesh of 4� 4� 4 for 64-atom supercells
and 12� 12� 12 for 8-atom unit cells.

2. Train the first NEP model

With the training data, we proceed to train our first NEP
model, denoted as NEP-iteration-1. For this task, we need to
prepare an input file named nep.in for the nep executable in the
GPUMD package. This nep.in input file contains the various
hyperparameters for the NEP model under training. Most hyper-
parameters have well-suited default values, and for users initiating
this process, it is recommended to use these defaults whenever
applicable. The default values for key hyperparameters are as
follows:

1. nRmax : 4
2. nAmax : 4
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3. Chebyshev polynomial basis size for radial descriptor compo-
nents NR

bas : 12
4. Chebyshev polynomial basis size for angular descriptor compo-

nents NA
bas : 12

5. l3bodymax : 4
6. l4bodymax : 2
7. l5bodymax : 0 (not used by default)
8. Nneu : 30
9. Energy and force weights λe and λf : 1
10. Virial weight λv : 0:1
11. Batch size: 1000 (a large or even full batch is preferred for

training with SNES)
12. Population size in SNES: 50
13. Number of training generations (steps): 100 000
14. ANN architecture: 30-30-1 (input layer 30, hidden layer 30,

scalar output; relatively small but sufficient for most cases,
expect for very complicated training data.)

Following this strategy, we use a very simple nep.in input
file for our case, which is as follows:

type 1 Si
cutoff 5 5

In the first line, we specify the number of species (atom types) and
the chemical symbol(s). In our example, there is only one species
with the chemical symbol Si. In the second line, we specify the
cutoff radii rRc and rAc for the gn(rij) functions in the radial and
angular descriptor components, respectively. In our example, both
cutoff radii are set to 5 Å, which includes the third nearest neigh-
bors. The choice of cutoff radii is crucial for the performance of
the trained NEP model and usually requires a systematic explora-
tion to find an optimal set of values. It is important to note that
the average number of neighbors, and hence the computational
cost, scales cubically with respect to the cutoff radii. Therefore,
blindly using large cutoff radii is not advisable. Although rRc ¼ rAc
in our current example, it is generally beneficial to use a larger rRc
and a smaller rAc , because the radial descriptor components are
computationally much cheaper than the angular descriptor compo-
nents. Using a larger rRc does not lead to a significant increase in
the computational cost, but can help capture longer-range interac-
tions (such as screened Coulomb interactions in ionic com-
pounds23) that typically have little angular dependence. A larger
radial cutoff is also useful for capturing dispersion interactions in
Van der Waals structures.141

The training results for NEP-iteration-1 are shown in Fig. 5(a).
The RMSEs of force, energy, and virial all converge well within the
default 100 000 training steps. The parity plots for force, energy, and
virial in Figs. 5(b)–5(d) show good correlations between the NEP
predictions and the DFT reference data. The RMSEs for energy,
force, and virial are 1.0 meV/atom, 54.6 meV/Å, and 21.8 meV/atom,
respectively.

3. Training iterations

Reliable assessment of the accuracy of a MLP typically
involves an independent test dataset rather than the training
dataset. To this end, we perform 10-ps MD simulations using
NEP-iteration-1 in the NPT ensemble. The target pressure is set to
zero, and the target temperatures range from 100 to 1000 K with
intervals of 100 K. We sample 100 structures, totalling 6400 atoms.

We perform single-point DFT calculations for these structures
and then use NEP-iteration-1 to generate predictions. This is
achieved by adding the prediciton keyword to the nep.in
file:

type 1 Si
cutoff 5 5
prediction 1

This results in a rapid prediction for the test dataset. The RMSEs
for energy, force, and virial are 1.2 meV/atom, 41.6 meV/Å, and
8.5 meV/atom, respectively. These values are already comparable to
those for the training dataset, indicating that we can actually stop
here and use NEP-iteration-1 as the final model. However, for
added confidence, it is generally advisable to perform at least one
more iteration. Therefore, we combine the test dataset (100 struc-
tures) with the training dataset (150 structures) to form an
expanded training dataset (250 structures), and then train a new
model named NEP-iteration-2. With this new NEP model, we gen-
erate another test dataset with 100 structures, using similar proce-
dure as above but with a simulation time of 10 ns (instead of 10
ps), driven by NEP-iteration-2 for each temperature. The test
RMSEs for NEP-iteration-2 are 0.5 meV/atom (energy), 33.5 meV/
Å (force), and 8.9 meV/atom (virial), respectively. Both the energy
and force RMSEs are smaller than those for the previous iteration,
indicating the improved performance of NEP-iteration-2 compared
to NEP-iteration-1.

The high accuracy of the latest test dataset sampled from
10-ns MD simulations driven by NEP-iteration-2 suggests that
NEP-iteration-2 is a reliable model for MD simulation of crystalline
silicon from 100 to 1000 K. Therefore, we conclude the iteration
and use NEP-iteration-2 for the thermal transport applications. In
the following, we will refer to NEP-iteration-2 simply as NEP. This
NEP model, running on a consumer-grade NVIDIA RTX 4090
GPU card with 24 GB of memory, achieves a remarkable computa-
tional speed of about 2:4� 107 atom-step/second, equivalent to a
computational cost of about 4:2� 10�8 s/atom/step in MD
simulations.

Using a trained MLP to generate MD trajectory is a common
practice in nearly all the active-learning schemes documented in
the literature. The major difference between different active-
learning schemes is about the criteria for selecting structures to be
added to the training dataset. While there might be a risk of sam-
pling nonphysical structures using a trained MLP model, as dem-
onstrated in this tutorial, one can mitigate the risk by conducting a
few iterations and employing shorter MD runs in the initial stages,
progressively increasing the MD simulation time with each itera-
tion. As a result, the MLP becomes increasingly reliable throughout
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the iteration process, enabling the generation of longer and more
accurate trajectories over time. In our example using the silicon
crystal, a relatively simple system, we only performed two iterations
to achieve accurate predictions for 10-ns MD runs. However, for
more complex systems, one might need to perform more iterations,
increasing the MD steps more gradually than what we have demon-
strated for the silicon crystal example.

C. Thermal transport applications

1. Phonon dispersion relations

Before applying a MLP to thermal transport applications, it is
usually a good practice to examine the phonon dispersion relations.
The phonon dispersion relations for NEP and Tersoff195 potentials
are calculated using GPUMD, employing the finite-displacement
method with a displacement of 0.01 Å. For DFT, we use density
functional perturbation theory as implemented in VASP in

combination with PHONOPY,196 using a 4� 4� 4 supercell, a cutoff
energy of 600 eV, an energy convergence threshold of 10�8 eV, and
a 5� 5� 5 k-point mesh.

In Fig. 6, we compare the phonon dispersion relations calcu-
lated from DFT, Tersoff potential, and NEP. While there are small
differences between NEP and DFT results, the agreement between
NEP and DFT is significantly better than that between Tersoff and
DFT. The agreement between NEP and DFT can, in principle, be
further improved, for example, by increasing the size of the ANN
model and/or the cutoff radii. However, this comes with a trade-off,
as it may reduce computational efficiency. In practice, achieving a
balance between accuracy and speed is essential.

2. Thermal conductivity from EMD

After validating the phonon dispersion relations, we proceed
to thermal conductivity calculations using the various MD

FIG. 5. (a) Evolution of RMSEs of energy, force, and virial with respect to training generations (steps). (b) Comparison of force, (c) energy, and (d) virial calculated by
NEP against DFT reference data for the initial training dataset.
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methods, as reviewed in Sec. III. All calculations are performed
using the gpumd executable in GPUMD.

We start with the EMD method, using a sufficiently large
12� 12� 12 cubic supercell with 13 824 atoms. The run.in file
for the gpumd executable is configured as follows:

potential nep.txt
velocity 300

ensemble npt_ber 300 300 100 0 53.4059 2000
time_step 1
dump_thermo 1000
run 500000

ensemble nve
compute_hac 20 50000 10
run 10000000

There are three input blocks. In the first block, we specify the NEP
potential file and set the initial temperature to 300 K. The second
block represents an equilibration run of 500 ps in the NPT ensemble,
aiming to reach a target temperature of 300 K and a target pressure
of zero. The third block corresponds to a production run of 10 ns in
the NVE ensemble, with heat current sampled every 20 steps.

We perform 50 independent runs using the inputs above, each
with a different set of initial velocities. The κ(t) [cf. Eq. (26)]
results from individual runs (thin solid lines) and their average
(thick solid line) and error bounds (thick dashed lines) are shown
in Fig. 7(a). Taking t ¼ 1 ns as the upper limit of the correlation
time, up to which κ(t) converges well, we have
κ � 102+ 6Wm�1K�1 from the EMD method. In this work, all
statistical errors are calculated as the standard error of the mean.

3. Thermal conductivity from HNEMD

We then move to the HNEMD method. Since the HNEMD
method has the same finite-size effects as in the EMD method, we
use the same simulation cell as in the EMD method. The run.in
file for the gpumd executable reads as follows:

potential nep.txt
velocity 300

ensemble npt_ber 300 300 100 0 53.4059 2000
time_step 1
dump_thermo 1000
run 1000000

ensemble nvt_nhc 300 300 100
compute_hnemd 1000 2e-5 0 0
compute_shc 2 250 0 1000 120
dump_thermo 1000
run 10000000

There are also three input blocks, and only the production block
differs from the case of EMD. Here, the temperature is controlled
using the Nosé–Hoover chain thermostat, and an external force in
the x direction with Fe ¼ 2� 10�5 Å�1 is applied. The production
run has 10 ns in total.

We perform 4 independent runs using the specified inputs,
each with a different set of initial velocities. The κ(t) [cf. Eq. (34)]
results from individual runs (thin solid lines) and their average
(thick solid line) and error bounds (thick dashed lines) are shown
in Fig. 7(b). The estimated thermal conductivity is
κ � 108+ 4Wm�1K�1, consistent with the EMD value within
statistical error bounds. It is noteworthy that the total production
time for the HNEMD simulations (4� 10 ns) is considerably
smaller than that for the EMD simulations (50� 10 ns), while the
former still gives a smaller statistical error. This suggests a higher
computational efficiency of the HNEMD over the EMD method, as
previously emphasized.54

From the HNEMD simulations, we also obtain the spectral
thermal conductivity κ(ω) [cf. Eq. (39)]. By combining this with
the spectral conductance G(ω) [cf. Eq. (37)] in a ballistic NEMD
simulation (details provided below), we calculate the phonon MFP
spectrum as

λ(ω) ¼ κ(ω)
G(ω)

, (45)

which is a generalization of Eq. (8). The calculated λ(ω) is shown in
Fig. 7(c). Remarkably, in the low-frequency limit, λ(ω) can go well
beyond one micron. With κ(ω) and λ(ω), one can calculate the spec-
tral apparent thermal conductivity κ(ω, L) according to Eq. (10) and
obtain the apparent thermal conductivity at any length L using
Eq. (11). The results are depicted by the solid line in Fig. 7(d).

FIG. 6. Phonon dispersion relations of silicon from DFT (circles), Tersoff poten-
tial (dashed lines), and NEP (solid lines).
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4. Thermal conductivity from NEMD

The third MD method we demonstrate is the NEMD method,
using the fixed boundary setup discussed in Sec. II C 2. We explore
lengths L ¼ 2:7, 5.5, 11.0, 21.9, 43.8, 87.6, 175.3, 350.5 nm, main-
taining a consistent 5� 5 cell in the transverse direction. The heat
source and sink regions span 4.4 nm, which is long enough to
ensure fully thermalized phonons within these regions. The
run.in input file for our NEMD simulations reads as follows:

potential nep.txt
velocity 300

ensemble nvt_ber 300 300 100
time_step 1
fix 0
dump_thermo 100
run 100000

ensemble heat_lan 300 100 10 1 7
fix 0
compute 0 10 100 temperature
compute_shc 2 250 0 1000 120.0 group 0 4
run 2000000

Unlike the EMD and HNEMD simulations, the NEMD simula-
tions involve an extra operation: certain atoms are frozen. We assign
these atoms to the “group” 0 and use the fix 0 command to freeze
them. In the production stage, two Langevin thermostats with differ-
ent temperatures are applied separately to groups 1 and 7, correspond-
ing to the heat source and the heat sink, respectively. The temperature
difference between them is set to 20 K. The heat flux can be obtained
from the data produced by the compute keyword, allowing us to cal-
culate the apparent thermal conductivity κ(L) according to Eq. (29).
The production stage has a duration of 2 ns, with a well-established
steady state achieved within the first 1 ns. Therefore, we use the
second half of the production time to calculated the aforementioned
stead-state properties. For each system length, we perform 2 indepen-
dent runs, each with a different set of initial velocities. To get the spec-
tral conductance G(ω) in the ballistic limit, as used in Eq. (45), we use
the data produced by the compute_shc keyword in NEMD simula-
tions with a short system length of L ¼ 1:6 nm.

As expected, the κ(L) values from NEMD simulations match well
with the κ(L) curve from the HNEMD-based formalism [Fig. 7(d)].
However, reaching the diffusive limit directly through NEMD simu-
lations is computationally demanding. Considering the presence of
different phonon MFPs [Fig. 7(c)] in the system, linear extrapolation
to the diffusive limit based on a limited number of κ(L) values from
NEMD simulations is often inadequate. This limitation arises
because the relation between 1=κ(L) and 1=L becomes nonlinear in
the large-L limit (see Fig. 8). This nonlinearity is a general feature in
realistic materials, as also demonstrated in our toy model [Fig. 2(d)].

As of now, we have demonstrated the full consistency among
the three MD-based methods. Notably, the HNEMD method
stands out as the most computationally efficient. This explains why
most works based on GPUMD utilize the HNEMD method, with the
other two methods typically being employed primarily for sanity-
checking the results.

5. Comparison with experiments

After obtaining consistent results from three MD methods, we
are ready to compare the results with experimental data. The
thermal conductivity of crystalline silicon is measured to be about
150Wm�1 K�1, but our HNEMD simulations predict a value of
108+ 4Wm�1 K�1, which is only 72% of the experimental value.
As a comparison, the thermal conductivity of crystalline silicon has
been calculated197 to be about 250+ 10Wm�1 K�1 using a Tersoff
potential,195 which is 167% of the experimental value. Specifically,
the Tesoff potential appears to underestimate the phonon anharmo-
nicity, while the NEP model tends to overestimate it.

According to a recent unpublished study by Wu et al.,181 the
underestimation of thermal conductivity by MLPs could potentially be
attributed to small but finite force errors compared to the reference data,
leading to extra phonon scatterings. Based on the fact that the force
errors form a Gaussian distribution, similar to the random forces in the
Langevin thermostat, a method for correcting the force-error-induced
underestimation of the thermal conductivity from MLPs is proposed.181

This correction involves conducting a series of HNEMD simulations
with the temperature being controlled by a Langevin thermostat with
various relaxation times τT . Each component of the random force
follows a Gaussian distribution with zero mean and a variance of

σ2
lan ¼

2kBTm
τTΔt

, (46)

where m is the average atom mass in the system and Δt is the integra-
tion time step. When the random forces in the Langevin thermostat and
the force errors in the MLP (with a RMSE of σmlp at a particular tem-
perature) are present simultaneously, a new set of force errors is created,
with a larger variance given by

σtot
2 ¼ σ lan

2 þ σmlp
2, (47)

according to the properties of Gaussian distribution. After obtaining
κ(σtot) at different σ tot, the thermal conductivity with zero total force
error κ(σtot ¼ 0) can be obtained from the following relation:181

1
κ(σ tot)

¼ 1
κ(σtot ¼ 0)

þ βσ tot, (48)

where β is a fitting parameter.
Based on the correction method, we perform HNEMD simula-

tions using the Langevin thermostat with the following set of τT
values: 30, 50, 100, 200, and 500 ps. From these, the σL values are cal-
culated to be 17.3, 27.4 38.7 54.8, and 70.7meV/Å. At 300 K, the
force RMSE for our NEP model is tested to be σmlp ¼ 21:2 meV/Å.
Therefore, the resulting σ tot values are 27.4, 34.6, 44.2, 58.7, and
73.8meV/Å. To ensure consistency with experimental conditions, we
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also account for the presence of a few Si isotopes (92.2% 28Si, 4.7%
29Si, and 3.1% 30Si) in the calculations. The calculated κ(σ tot) with the
various σ tot are shown in Fig. 9(a). By fitting these data, we obtain a
corrected thermal conductivity of κ(σ tot ¼ 0) ¼ 145Wm�1 K�1, in
excellent agreement with the experimental value.

The extrapolation scheme described by Eq. (48) not only
applies to a single NEP model with different levels of intentionally
added random forces through the Langevin thermostat, but is also
valid for different NEP models with varying accuracy. To demon-
strate this, we construct two extra NEP models with reduced accu-
racy. Starting from the default hyperparameters, we construct the
first extra NEP model by reducing the number of neurons in the
hidden layer from 30 to 1, resulting in an increased force RMSE of
32.4 meV/Å. Based on this, we then construct the second extra
NEP model by further reducing the Chebyshev polynomial basis
sizes (NR

bas, NA
bas) from (12, 12) to (4, 4), resulting in a further

increased force RMSE of 52.9 meV/Å. The thermal conductivity
results from the three NEP models with different accuracy using
the Nosé–Hoover chain thermostat also closely follow the extrapo-
lation curve [Fig. 9(a)], providing further support for the validity of
the extrapolation scheme Eq. (48).

FIG. 7. Thermal conductivity of crystalline silicon at 300 K from three MD-based methods using the herein developed NEP. (a) Results from 50 independent EMD runs
(thin solid lines), along with their average (thick solid line) and error bounds (thick dashed lines); (b) Results from four independent HNEMD runs (thin solid lines), along
with their average (thick solid line) and error bounds (thick dashed lines); (c) Phonon MFP spectrum calculated using spectral decomposition method; (d) Results from
NEMD simulations (red symbols), matching the κ(L) curve from the HNEMD-based formalism.

FIG. 8. The nonlinearity in the relation between κ(L ¼ 1)=κ(L) and 1=L in the
large-L limit, observed in the second toy model [as discussed in Fig. 2(d)] and
the silicon example.
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Our results for 300 K before and after the correction are con-
sistent with those reported in the previous work,181 which also uses
a NEP model [Fig. 9(b)]. In Fig. 9(b), we also show the results for
other temperatures181 in comparison to the experimental data. The
corrected results agree well with the experimental ones across a
broad range of temperatures. The slightly higher values from cor-
rected NEP model predictions are likely due to the fact that isotope
disorder was not considered in the previous calculations.181

While we have only demonstrated the application of the
extrapolation (correction) method to HNEMD simulations, it is
worth noting that this method is also potentially applicable to
EMD simulations. We speculate that the force errors in MLPs may
also play a role in ALD-based approaches for thermal transport.

V. SUMMARY AND CONCLUSIONS

In summary, we have provided a comprehensive pedagogical
introduction to MD simulations of thermal transport utilizing the
NEP MLP as implemented in the GPUMD package.

We began by reviewing fundamental concepts related to
thermal transport in both ballistic and diffusive regimes, elucidating
the explicit expression of the heat flux in the context of MLPs, and
exploring various MD-based methods for thermal transport studies,
including EMD, NEMD, HNEMD, and spectral decomposition.

Following this, we conducted an up-to-date review of the liter-
ature on the application of MLPs in thermal transport problems
through MD simulations.

A detailed review of the NEP approach followed, with a
step-by-step demonstration of the process of developing an accurate
and efficient NEP model for crystalline silicon applicable across a
range of temperatures. Utilizing the developed NEP model, we
explained the technical details of all MD-based methods for
thermal transport discussed in this work. Finally, we compared the
simulation results with experimental data, addressing the common
trend of thermal conductivity underestimation by MLPs and dem-
onstrating an effective correction method.

By completing this tutorial, readers will be equipped to con-
struct MLPs and seamlessly integrate them into highly efficient and
predictive MD simulations of heat transport.
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DATA AVAILABILITY

All the training and test datasets and the trained NEP models
for crystalline silicon are freely available at https://gitlab.com/
brucefan1983/nep-data. The training datasets, trained NEP, DP,
and MTP models for graphene and MD input files for reproducing
Fig. 3 are freely available at https://github.com/hityingph/
supporting-info/tree/main/Dong_GPUMD_Tutorial_2024.

APPENDIX: DETAILS ON HEAT CURRENT VALIDATION

To validate the implementation of heat current for NEP, DP,
and MTP (see Fig. 3), we use a common reference dataset to train a
model for each of the three MLPs. We take all the monolayer gra-
phene structures from Ref. 67 and use 3288 structures
(99 493 atoms) as our training dataset and 822 structures
(25 035 atoms) as our test dataset, respectively.

For NEP, we set rRc ¼ 6 Å, rAc ¼ 4 Å, Nneu ¼ 50,
Ngen ¼ 5� 105, while keeping other hyperparameters as the
defaults. For DP, the DEEPMD-KIT package (version 2.1.4)21 is used,
with the se_a descriptor with a cutoff radius of 6 Å. The dimen-
sions of the embedding network are set to (25, 50, 100), and the
fitting network dimensions are configured as (240, 240, 240).
Initially, the weighting parameters for energy and forces are set to
0.02 and 1000, respectively, and are linearly adjusted to 1 for both
during the training process. The training comprises 4� 106 steps,
with a learning rate that is exponentially decreased from 10�3 to
10�8. For MTP, the MLIP (version 2) package20 is used. The descrip-
tor “level” for MTP is set to 18, with a cutoff radius of 6 Å.

Table III presents the performance metrics for the three MLP
models.

We then conduct NEMD simulations to validate the imple-
mentations of heat current in the three MLPs by checking the con-
sistency between the accumulated heat in atoms within the
transport region [cf. Eq. (25)] and that obtained from the thermo-
stats [cf. Eq. (31)]. The NEMD simulation procedure is similar to
that as described in Sec. IV C 4 for silicon. The transport is set to
be along the armchair direction of a graphene sample with a width
of 2.5 nm and a length of 426 nm (excluding the thermostatted
regions). The data presented in Fig. 3 are sampled during the last
1.5 ns of the NEMD simulations, during which a steady state is
achieved.
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